Motions and relaxations of confined liquids.

نویسنده

  • S Granick
چکیده

When a liquid is confined in a narrow gap (as near a cell membrane, in a lubricated contact between solids, or in a porous medium), new dynamic behavior emerges. The effective shear viscosity is enhanced compared to the bulk, relaxation times are prolonged, and nonlinear responses set in at lower shear rates. These effects are more prominent, the thinner the liquid film. They appear to be the manifestation of collective motions. The flow of liquids under extreme confinement cannot be understood simply by intuitive extrapolation of bulk properties. Practical consequences are possible in areas from tribology and materials processing to membrane physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanometer-sized dynamic entities in an aqueous system.

Using neutron spin-echo and backscattering spectroscopy, we have found that at low temperatures water molecules in an aqueous solution engage in center-of-mass dynamics that are different from both the main structural relaxations and the well-known localized motions in the transient cages of the nearest neighbor molecules. While the latter localized motions are known to take place on the picose...

متن کامل

Nanosecond motions in proteins impose bounds on the timescale distributions of local dynamics.

We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential characte...

متن کامل

Collective intermolecular motions dominate the picosecond dynamics of short polymer chains.

Neutron scattering and extensive molecular dynamics simulations of an all atom C(100)H(202) system were performed to address the short-time dynamics leading to center-of-mass self-diffusion. The simulated dynamics are in excellent agreement with resolution resolved time-of-flight quasielastic neutron scattering. The anomalous subdiffusive center-of-mass motion could be modeled by explicitly acc...

متن کامل

Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses

The Johari-Goldstein secondary (β) relaxations are an intrinsic feature of supercooled liquids and glasses. They are crucial to many properties of glassy materials, but the underlying mechanisms are still not established. In a model metallic glass, we study the atomic rearrangements by molecular dynamics simulations at time scales of up to microseconds. We find that the distributions of single-...

متن کامل

A universal origin for secondary relaxations in supercooled liquids and structural glasses

Nearly all glass forming liquids display secondary relaxations, dynamical modes seemingly distinct from the primary alpha relaxations. We show that accounting for driving force fluctuations and the diversity of reconfiguring shapes in the random first order transition theory yields a low free energy tail on the activation barrier distribution which shares many of the features ascribed to second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 253 5026  شماره 

صفحات  -

تاریخ انتشار 1991